首页> 外文OA文献 >A microscopic picture of surface charge trapping in semiconductor nanocrystals
【2h】

A microscopic picture of surface charge trapping in semiconductor nanocrystals

机译:半导体纳米晶体中表面电荷俘获的显微照片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current model for understanding trapping of charge carriers to the surface of semiconductor nanocrystals is inconsistent with experimental evidence indicating that carriers can thermally de-trap from surface sites. A proper understanding of the microscopic details of charge trapping would guide chemical design of the nanocrystal surface for applications such as charge transport, sensing, or photochemistry. This thesis presents a model of surface charge trapping in which transitions to surface state are governed by rates derived from semiclassical electron-transfer theory. In this picture, trapping to the surface induces a strong polarization in the nanocrystal, resulting in a trapped state with strong electron-phonon coupling via the Frölich mechanism. This trapped state then emits over a broad energy range due to a Franck-Condon vibronic progression. This model is shown to be consistent with the temperature-dependence of core and surface emission as well as the spectral properties of surface emission. The strong coupling of the surface state is validated by independent experiments, and the model is shown to hold promise for explaining the experimental data regarding the trapping of hot (excess energy) carriers.
机译:当前用于理解将电荷载流子捕获到半导体纳米晶体表面的模型与表明载流子可以从表面位点热脱附的实验证据不一致。对电荷捕获的微观细节的正确理解将指导纳米晶体表面的化学设计用于诸如电荷传输,传感或光化学的应用。本文提出了一种表面电荷俘获模型,其中由半经典电子转移理论推导的速率决定了向表面态的转变。在这张照片中,捕获到表面会在纳米晶体中引起强烈的极化,从而通过Frölich机理形成具有强电子-声子耦合的捕获状态。然后,由于弗兰克-康登(Franck-Condon)的振动过程,这种被捕获的状态会在较宽的能量范围内发射。该模型显示出与纤芯和表面发射的温度相关性以及表面发射的光谱特性一致。表面状态的强耦合通过独立的实验验证,并且该模型显示出有望用于解释有关捕获热(过量能量)载流子的实验数据。

著录项

  • 作者

    Mooney, Jonathan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号